
Clustering and Performance Testing on
Google Cloud Platform (GCP) with Google
Compute Engine and Red Hat OpenShift

March 2023

Table of Contents

1. Executive Summary 4
1.1) Introduction 4
1.2) Test Environment 4
1.3) Summary of Results 7

Throughput in GCE VM 7
Throughput in OpenShift 8
Application Performance Index (Apdex) in GCE VM 9
Application Performance Index (Apdex) in OpenShift 10

1.4) Conclusion and Recommendations 11
2. Test Environment Setup 12

2.1) Test Environment 12
Application Server 12
Database Server 12
Web Server/Load Balancer 12
OpenShift Configuration 13
Load Test Configuration 13
Test App 13
Test Script 14
Test Methodology 14

2.2) Setup the Joget Server Cluster 15
Launch GCE Instance 15
Install Java 15
Install Joget 15
Install Nginx 15
Configure Load Balancer 15
Configure Shared Database 17
Configure Shared File Directory 18
Optimize Java 18
Optimize Tomcat 18
Tomcat Session Persistence 18
Optimize MySQL 19

2.3) Add a New Joget Node 20
Launch New Joget Node 20
Configure New Joget Node 20
Add to Load Balancer 20

2.4) Setup the Joget OpenShift environment 21

2

Joget Deployment 21
Database Configuration 23
Route Configuration 24

2.5) Setup Load Testing Clients 25
Create a folder to store JMeter test file, results and reports 25
Download & Configure JMeter master 25
Running the multi Jmeter testing (distributed load testing) 25
Run JMeter load test 26

3. Performance Test Results 27
3.1) 100 users 1 node 27
3.2) 250 users 1 node 28
3.3) 500 users 1 node 29
3.4) 750 users 1 node 30
3.5) 1000 users 1 node 31
3.6) 1000 users 2 node cluster 32
3.7) 2000 users 2 node cluster 33
3.8) 2000 users 3 node cluster 34
3.9) 100 users 2 pods 35
3.10) 250 users 2 pods 36
3.11) 500 users 2 pods 37
3.12) 750 users 2 pods 38
3.13) 1000 users 2 pods 39
3.14) 1000 users 4 pods 40
3.15) 2000 users 4 pods 41
3.16) 2000 users 6 pods 42

Appendix: Sample Test Output 43
500 users 1 node JMeter output 43
1000 users 2 node cluster JMeter output 43

DISCLAIMER: This report is prepared with the intention to provide information on expected
baseline performance from Joget DX 8. Although best efforts have been made to conduct an
unbiased test, there are many factors involved and the results cannot be guaranteed in different
environments. The reader of this report uses all information in this report at his/her own risk, and
Joget Inc shall in no case be liable for any loss resulting from the use of this report.

3

1. Executive Summary

1.1) Introduction

Joget DX 8 is a next generation open source application platform for faster, simpler digital
transformation (DX). Joget DX 8 combines the best of business process automation, workflow
management and low code application development in a simple, flexible and open platform.

This document is intended to describe and analyze the results of performance tests on a clustered
deployment of Joget DX 8 on Google Cloud Platform (GCP).

1.2) Test Environment

The tests were conducted on Google Cloud Platform (GCP), specifically using the Google
Compute Engine (GCE). GCP offered great flexibility in allowing servers and clients to be created
and scaled up as required.

The architecture of the clustered deployment is similar to the following diagram:

The test was conducted using the following product versions:

Joget: Joget DX 8 Cloud Edition 8.0-RC build 917e1b8
OS: Ubuntu 22.04 LTS
Java: OpenJDK 11.0.17
Web Application Server: Apache Tomcat 9.0.71
Database: MySQL 8.0.32
Web Server/Load Balancer: Nginx Web Server 1.18
Load Testing Tool: Apache JMeter 5.5

4

https://www.joget.org/joget-dx
https://cloud.google.com
https://cloud.google.com/compute
https://cloud.google.com/compute

In addition to the Google Compute Engine, an OpenShift environment was also setup for the load
testing:
Joget Image: Joget DX 8 on EAP 7 8.0-RC2
OpenShift Version: 4.11.27
Database: MySQL 8.0.30
Load Testing Tool: Apache JMeter 5.5

To establish the baseline performance, a HR Expenses Claim test app was used.

Using a think time of 10 seconds with random deviation of 3 seconds, the test script used covers
the following app usage:

1. View Login Page
2. Submit Login Form
3. View Expenses Claim Form
4. Get CSRF Token
5. Submit Expenses Claim Form
6. Get CSRF Token
7. Submit Expenses Claim Form to Approver
8. Logout

Tests were carried out for the following (for VM and OpenShift):
VM

1. 100 concurrent users on 1 node (c2d-highcpu-4)
2. 250 concurrent users on 1 node (c2d-highcpu-4)
3. 500 concurrent users on 1 node (c2d-highcpu-4)
4. 750 concurrent users on 1 node (c2d-highcpu-4)
5. 1000 concurrent users on 1 node (c2d-highcpu-4)

5

6. 1000 concurrent users on 2 nodes (c2d-highcpu-4)
7. 2000 concurrent users on 2 nodes (c2d-highcpu-4)
8. 2000 concurrent users on 3 nodes (c2d-highcpu-4)

OpenShift
1. 100 concurrent users on 2 pods
2. 250 concurrent users on 2 pods
3. 500 concurrent users on 2 pods
4. 750 concurrent users on 2 pods
5. 1000 concurrent users on 2 pods
6. 1000 concurrent users on 4 pods
7. 2000 concurrent users on 4 pods
8. 2000 concurrent users on 6 pods

For each test, the JMeter summary results were collected. Once all the results were collected, the
throughput (requests per second) and average response times were compared and analyzed.

6

1.3) Summary of Results

 Throughput in GCE VM

The results are summarized in the table and graph below:

Throughput (Request/Second)

Concurrent Users 1 node 2 nodes 3 nodes
100 19.06

250 43.46

500 77.39

750 104.36

1000 118.04 125.10

2000 208.57 231.38

7

 Throughput in OpenShift

The results are summarized in the table and graph below:

Throughput (Request/Second)

Concurrent Users 2 pods 4 pods 6 pods
100 18.69

250 42.77

500 74.29

750 107.02

1000 132.82 138.91

2000 238.56 252.92

8

Application Performance Index (Apdex) in GCE VM

Apdex is an open standard for measuring performance of software applications. The results are
summarized in the table and graph below:

Apdex Score
Concurrent Users 1 node 2 nodes 3 nodes

100 1.000

250 1.000

500 1.000

750 1.000

1000 0.968 1.000

2000 0.807 0.951

9

https://www.apdex.org

Application Performance Index (Apdex) in OpenShift

Apdex Score
Concurrent Users 2 pods 4 pods 6 pods

100 1.000

250 1.000

500 1.000

750 0.999

1000 0.995 0.998

2000 0.964 0.979

10

1.4) Conclusion and Recommendations

From the results it can be seen that for a basic baseline app, a single modestly spec-ed
c2d-highcpu-4 server (4 vCPU, 8GB RAM) can handle 500 concurrent users with acceptable
response times. The tests also show that scaling out horizontally (adding nodes to a cluster),
supports an almost linear increase in concurrent users.

With emphasis on performance optimization at the core platform, Joget DX 8 incurs low overhead
when running apps. If there are any specific bottlenecks, it would usually be at the application or
plugin level. At the application level, there are various guidelines and best practices that are
available in the Performance Optimization and Scalability Tips article in the Joget DX 8 Knowledge
Base. Joget DX 8 provides many performance related features such as Application Performance
Monitoring and Alerts, Performance Analyzer, Userview Caching, and Governance Health Checks.

For large deployments that support large numbers of concurrent users, it is important that the
environment is tuned and optimized e.g. Java VM tuning, app server tuning, database optimization,
as per the Deployment Best Practices article.

It is important to note that as Joget is a platform and not directly an end-user app, the scalability
and performance would depend on potentially many factors:

1. Total number of users
2. Maximum expected concurrent users
3. Number of apps running on the platform
4. Complexity of each of the apps
5. Amount of data generated in each app
6. Network infrastructure

The recommended deployment architecture would very much depend on the environment and
usage. Perhaps some things to be considered:

1. How many total and concurrent users are there? Will this grow in future?
2. In the current environment, is the current infrastructure sufficient for the load? Would it be

possible to increase the server resources?
3. If the needs outgrow one server node, it might be time to consider implementing clustering

and/or load balancing.
4. Another possible approach could be to partition the apps. Are there specific apps that incur

the highest load? Maybe it might be appropriate to separate apps into different servers.
5. Deploy Joget on cloud native platforms like Red Hat OpenShift to take advantage of

autoscaling.

In summary, this report demonstrates the baseline performance of the Joget DX 8 platform for a
basic app and shows how horizontal scaling can be used to support larger deployments. Although
these results can serve as a base guideline, it is recommended that performance testing and
optimisations are performed based on each deployment's unique requirements, environments and
usage patterns.

11

https://dev.joget.org/community/display/DX8/Performance+Optimization+and+Scalability+Tips
https://dev.joget.org/community/display/DX8/Joget+DX+7+Knowledge+Base
https://dev.joget.org/community/display/DX8/Joget+DX+7+Knowledge+Base
https://dev.joget.org/community/display/DX8/Application+Performance+Management
https://dev.joget.org/community/display/DX8/Application+Performance+Management
https://dev.joget.org/community/display/DX8/Performance+Analyzer
https://dev.joget.org/community/display/DX8/Performance+Improvement+with+Userview+Caching
https://dev.joget.org/community/display/DX8/Governance+Health+Check
https://dev.joget.org/community/display/DX8/Deployment+Best+Practices
https://www.openshift.com
https://blog.openshift.com/how-to-automatically-scale-low-code-apps-with-joget-and-jboss-eap-on-openshift/

2. Test Environment Setup
2.1) Test Environment

The tests were conducted on Google Cloud Platform (GCP), specifically using the Google
Compute Engine (GCE). GCP offered great flexibility in allowing servers and clients to be created
and scaled up as required.

The architecture of the clustered deployment is similar to the following diagram:

 Application Server

Joget: Joget DX 8 Cloud Edition 8.0-RC build 917e1b8
OS: Ubuntu 22.04 LTS
Java: OpenJDK 11.0.17
Web Application Server: Apache Tomcat 9.0.71
GCE Instance: c2d-highcpu-4

● 4 vCPU (virtual CPUs)
● 8GB RAM
● Java VM Options: -XX:MaxPermSize=256M -Xms4096M -Xmx4096M

 Database Server

Database: MySQL 8.0.31
GCE Instance: c2d-highcpu-4

● 4 vCPU
● 8GB RAM
● 1500 PIOPS

 Web Server/Load Balancer

OS: Ubuntu 22.04 LTS
Web Server/Load Balancer: Nginx Web Server 1.18
GCE Instance: e2.standard-2:

● 2 vCPU
● 8GB RAM

12

https://cloud.google.com/compute
https://cloud.google.com/compute

 OpenShift Configuration

Joget Image: Joget DX 8 on EAP 7 8.0-RC2
OpenShift Version: 4.11.27
Master nodes specification: n2-standard-4

● 4 vCPU
● 16GB RAM

Master nodes count: 3 replicas
Worker nodes specification: n2-standard-8

● 8 vCPU
● 32GB RAM

Worker nodes count: 5 replicas
Database: MySQL 8.0.30

 Load Test Configuration

Load Testing Tool: Apache JMeter 5.5
OS: Ubuntu 22.04 LTS
GCE Instance: e2.medium

● 2 vCPU
● 4GB RAM

Configuration: 1 master with 2 clients

 Test App

To establish the baseline performance, a HR Expenses Claim test app was used consisting of:

1. 1 process with 4 activities and 4 tools
2. 8 forms
3. 8 datalists
4. 1 userview containing menu pages to run the process and display the datalist and inbox

13

 Test Script

The test script used covers the following app usage:

14

1. View Login Page
2. Submit Login Form
3. View Expenses Claim Form
4. Get CSRF Token
5. Submit Expenses Claim Form
6. Get CSRF Token
7. Submit Expenses Claim Form to Approver
8. Logout

A think time of 10 seconds was used, with random deviation of 3 seconds.

 Test Methodology

The load tests were executed by using the latest Apache JMeter, which provides an automated
way of launching, running and collecting JMeter results.

Tests were carried out for the following (for VM and OpenShift):
VM

1. 100 concurrent users on 1 node (c2d-highcpu-4)
2. 250 concurrent users on 1 node (c2d-highcpu-4)
3. 500 concurrent users on 1 node c2d-highcpu-4)
4. 750 concurrent users on 1 node (c2d-highcpu-4)
5. 1000 concurrent users on 1 node (c2d-highcpu-4)
6. 2000 concurrent users on 2 nodes (c2d-highcpu-4)
7. 2000 concurrent users on 3 nodes (c2d-highcpu-4)

OpenShift
9. 100 concurrent users on 2 pods
10. 250 concurrent users on 2 pods
11. 500 concurrent users on 2 pods
12. 750 concurrent users on 2 pods
13. 1000 concurrent users on 2 pods
14. 1000 concurrent users on 4 pods
15. 2000 concurrent users on 4 pods
16. 2000 concurrent users on 6 pods

For each test, the JMeter summary results were collected. Once all the results were collected, the
throughput (requests per second) and average response times were compared and analyzed.

2.2) Setup the Joget Server Cluster
The following are brief descriptions of the steps used to setup the server instances:

 Launch GCE Instance

From the Google Cloud console, launch the appropriate GCE instance running on Ubuntu 22.04.

 Install Java

sudo apt-get install openjdk-11-jdk

15

https://jmeter.apache.org/

 Install Joget

Download Linux tar.gz bundle
Extract into /opt/joget
Run setup.sh and configure to the database

 Install Nginx

For the load balancer, install Nginx web server

sudo apt-get install nginx

 Configure Load Balancer

For the load balancer, another section in /etc/nginx/nginx.conf has been added

underscores_in_headers on;
upstream joget {

hash $remote_addr;
server joget-server-1:8080 weight=1;
server joget-server-2:8080 weight=1;

}

Increase the maximum number of open files by adding

fs.file-max=100000

into /etc/sysctl.conf

Increase the limit on the maximum number of open files for worker processes in Nginx by adding

worker_rlimit_nofile 30000;

into /etc/nginx/nginx.conf

Create a new file in /etc/nginx/sites-available, named joget

sudo vi /etc/nginx/sites-available/joget

Add the contents

server {
listen 80;

server_name 10.128.0.21;
underscores_in_headers on;
client_body_buffer_size 10K;
client_header_buffer_size 1k;
client_max_body_size 8m;
large_client_header_buffers 4 16k;
access_log /var/log/nginx/joget.access.log;

location /jw/web/applog/ {
proxy_pass http://joget/jw/web/applog/;
proxy_set_header Host $http_host;
proxy_set_header X-Forwarded-Host $host;

16

proxy_set_header X-Forwarded-Server $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Cookie $http_cookie;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";
proxy_buffering off;

}
location / {

proxy_pass http://joget;
proxy_redirect off;
proxy_pass_header X-CSRF-TOKEN;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-Server $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-NginX-Proxy true;
proxy_set_header Cookie $http_cookie;
proxy_read_timeout 3000;
proxy_buffers 32 4m;
proxy_busy_buffers_size 25m;
proxy_buffer_size 512k;
proxy_ignore_headers "Cache-Control" "Expires";
proxy_max_temp_file_size 0;
client_max_body_size 1024m;
client_body_buffer_size 4m;
proxy_connect_timeout 3000;
proxy_headers_hash_max_size 512;
proxy_send_timeout 3000;
proxy_intercept_errors off;
proxy_http_version 1.1;
proxy_set_header Connection "upgrade";

}

}

Enable the new site and reload Nginx

sudo ln -s /etc/nginx/sites-available/joget /etc/nginx/sites-enabled/joget
sudo nginx -t
sudo nginx -s reload

 Configure Shared Database

To install a MySQL database

sudo apt-get install mysql-server

Configure database permissions

mysql -u root

17

Run the following MySQL commands to create joget user and then grant permissions to user joget

CREATE USER 'joget'@'%' IDENTIFIED WITH mysql_native_password BY 'joget';
GRANT ALL PRIVILEGES ON jwdb.* TO 'joget'@'%';
flush privileges;
quit

Configure MySQL to listen to database connections from remote hosts. Edit the my.cnf file with
your favourite editor

sudo vim mysqld.conf.d/mysqld.cnf

Comment away the bind-address directive by adding a # in front of the line

#bind-address = 127.0.0.1

Restart MySQL

sudo systemctl restart mysql

Test remote connections. In the application server, test a remote connection to the database server
database_host

mysql -h database_host -u joget -p

 Configure Shared File Directory

Install NFS (for sharing file system)

sudo apt-get install portmap nfs-kernel-server nfs-common

Create new directory /opt/joget/shared/wflow to mount the shared directory and set the directory
permissions

sudo mkdir -p /opt/joget/shared/wflow
sudo chmod 777 /opt/joget/shared/wflow

Mount the shared directory.

sudo mount -t nfs joget-server:/export/wflow /opt/joget/shared/wflow

Test read-write permissions to confirm that the directory sharing works.

echo test123 > /opt/joget/shared/wflow/test.txt

 Optimize Java

Set appropriate Java heap settings e.g.

export JAVA_OPTS="-XX:MaxPermSize=256m -Xms4096M -Xmx4096M
-Djoget.home=$JOGET_HOME -Dwflow.home=/opt/joget/shared/wflow

18

-javaagent:/opt/joget/shared/wflow/wflow-cluster.jar
-javaagent:$JOGET_HOME/lib/aspectjweaver-1.9.7.jar
-javaagent:/opt/joget/lib/glowroot/glowroot.jar"

 Optimize Tomcat

Edit server.xml and add connectors, especially maxThreads

<Connector port="8080" protocol="HTTP/1.1"
connectionTimeout="20000"
maxThreads="2000"
compression="on"
useSendfile="false"
redirectPort="8443" />

Configure Linux ulimit Configuration:

ulimit -n 4096

Tomcat Session Persistence

To simulate an actual environment, in the event the load balancer does not support sticky sessions,
we can implement Persistent Manager in Tomcat, which has the capability to swap active (but idle)
sessions out to a persistent storage mechanism, as well as to save all sessions across a normal
restart of Tomcat.

We need to set org.apache.catalina.session.StandardSession.ACTIVITY_CHECK=true in
/opt/joget/apache-tomcat-9.0.71/conf/catalina.properties to ensure the persistent manager works
correctly.

In this testing we use a JDBC Based Store to save sessions in individual rows of a preconfigured
table in a database that is accessed via a JDBC driver. Create a database named tomcat and table
with the following SQL queries:

create database tomcat;
grant all privileges on tomcat.* to 'tomcat'@'%' identified by 'tomcat';
use tomcat;
create table tomcat_sessions (
session_id varchar(100) not null primary key,
valid_session char(1) not null,
max_inactive int not null,
last_access bigint not null,
app_name varchar(255),
session_data mediumblob,
KEY kapp_name(app_name)

);

In order for the JDBC Based Store to successfully connect to the database, we need to place the
JAR file containing MySQL JDBC driver into /opt/joget/apache-tomcat-9.0.71/lib directory.

Last but not least, add the following content into /opt/joget/apache-tomcat-9.0.71/conf/context.xml

<Loader loaderClass="org.apache.catalina.loader.ParallelWebappClassLoader" />
<Resources cachingAllowed="true" cacheMaxSize="100000" />

19

<Valve className="org.apache.catalina.valves.PersistentValve"/>
<Manager className="org.apache.catalina.session.PersistentManager"

maxIdleBackup="0"
maxIdleSwap="0"
minIdleSwap="0"
persistAuthentication='true'
processExpiresFrequency="6"
saveOnRestart='true'>

<Store className="org.apache.catalina.session.JDBCStore"
connectionURL="jdbc:mysql://joget-db-server-ip/tomcat?user=tomcat&password=tom
cat"

driverName="com.mysql.jdbc.Driver"
sessionAppCol="app_name"
sessionDataCol="session_data"
sessionIdCol="session_id"
sessionLastAccessedCol="last_access"
sessionMaxInactiveCol="max_inactive"
sessionTable="tomcat_sessions"
sessionValidCol="valid_session"/> </Manager>

 Optimize MySQL

Configure /etc/mysql/mysqld.conf.d/mysqld.cnf containing the following and restart MySQL

character-set-server=utf8
collation-server=utf8_unicode_ci

Add innodb buffer pool size config
innodb_buffer_pool_size = 6000M

2.3) Add a New Joget Node

When adding a new node to the server cluster, the following steps are taken (in this sample the
new node hostname will be joget-server3):

 Launch New Joget Node

Launch new instance of GCE and follow the steps to configure Joget as above

 Configure New Joget Node

SSH into node

Edit /etc/hosts to add node hostname, and modify joget-server IP if necessary e.g.

127.0.0.1 joget-server3
172.31.30.203 joget-server

Edit /etc/hostname to modify node hostname e.g.

joget-server3

20

Modify hostname e.g.

sudo hostname joget-server3

Remount NFS share (if joget-server shared directory IP was modified)

Configure Tomcat for clustering by editing server.xml. Add jvmRoute="node03" to the Engine tag.

<Engine name="Catalina" defaultHost="localhost" jvmRoute="node03">

Restart Tomcat.

 Add to Load Balancer

In the load balancer, edit /etc/nginx/nginx.conf to add the BalancerMember node e.g.

underscores_in_headers on;
upstream joget {

hash $remote_addr;
server joget-server-1:8080 weight=1;
server joget-server-2:8080 weight=1;
server joget-server-3:8080 weight=1;

}

then reload/restart Nginx.

2.4) Setup the Joget OpenShift environment
Joget Deployment

The deployment yaml;

kind: PersistentVolume
apiVersion: v1
metadata:
name: joget-pv-dx8loadtest

spec:
storageClassName: openshift-nfs
capacity:
storage: 20Gi

accessModes:
- ReadWriteMany

nfs:
server : {NFS-Server-IP}
path: /wflow

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: joget-pv-dx8loadtest-claim

spec:
storageClassName: openshift-nfs

21

accessModes:
- ReadWriteMany

Resources:
requests:
storage: 20Gi

apiVersion: v1
kind: Service
metadata:
name: joget
labels:
app: joget

spec:
ports:
- port: 8080
selector:
app: joget

type: ClusterIP

apiVersion: v1
kind: Service
metadata:
name: joget-ping
labels:
app: joget

spec:
ports:
- name: joget-ping
port: 8888

selector:
app: joget

clusterIP: None

apiVersion: apps/v1
kind: Deployment
metadata:
name: joget

spec:
selector:
matchLabels:
app: joget

replicas: 4
strategy:
type: RollingUpdate

template:
metadata:
labels:

app: joget
spec:
containers:
- image: quay.io/joget/joget-dx8-eap7:8.0-RC2

22

name: joget
env:
- name: JGROUPS_PING_PROTOCOL
value: openshift.DNS_PING

- name: OPENSHIFT_DNS_PING_SERVICE_NAME
value: joget-ping

- name: OPENSHIFT_DNS_PING_SERVICE_PORT
value: "8888"

- name: CACHE_NAME
value: http-session-cache

ports:
- containerPort: 8080
name: joget

volumeMounts:
- name: joget-persistent-storage
mountPath: /home/jboss/wflow

startupProbe:
httpGet:
path: /jw/web/console
port: 8080
scheme: HTTP

periodSeconds: 5
timeoutSeconds: 1
failureThreshold: 120

livenessProbe:
httpGet:
path: /jw/web/console
port: 8080
scheme: HTTP

initialDelaySeconds: 300
timeoutSeconds: 5
periodSeconds: 10
successThreshold: 1
failureThreshold: 20

readinessProbe:
httpGet:
path: /jw/web/console
port: 8080
scheme: HTTP

initialDelaySeconds: 30
timeoutSeconds: 5
periodSeconds: 10
successThreshold: 1
failureThreshold: 20

terminationGracePeriodSeconds: 120
volumes:
- name: joget-persistent-storage
persistentVolumeClaim:
claimName: joget-pv-dx8loadtest-claim

apiVersion: rbac.authorization.k8s.io/v1

23

kind: ClusterRoleBinding
metadata:
name: joget-dx8loadtest-clusterrolebinding

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: view

subjects:
- kind: ServiceAccount
name: default
namespace: loadtestdx8

Configured the GC_MAX_METASPACE_SIZE environment variable to 1000.

Database Configuration

Using Instantiate Template feature from OpenShift Console ;

Configured the DB MYSQL_MAX_CONNECTIONS environment variable value to 5000.

24

Route Configuration

Added annotation for haproxy.router.openshift.io/balance and haproxy.router.openshift.io/timeout.

The yaml for the route;
kind: Route
apiVersion: route.openshift.io/v1
metadata:
name: jogetloadtest
namespace: loadtestdx8

…
labels:
app: joget

annotations:
haproxy.router.openshift.io/balance: leastconn
haproxy.router.openshift.io/timeout: 60s
openshift.io/host.generated: 'true'

managedFields:
…{}
spec:
host: jogetloadtest-loadtestdx8.apps.openshift.joget.ai
path: /jw
to:
kind: Service
name: joget
weight: 100

port:
targetPort: 8080

wildcardPolicy: None
tls: null

…

2.5) Setup Load Testing Clients

Create a folder to store JMeter test file, results and reports

mkdir -p ~/load_tests/reports

Download & Configure JMeter master

Download JMeter from from https://jmeter.apache.org/

Extract the installer and edit user.properties file

vi apache-jmeter-5.5/bin/user.properties

change the value of APDEX satisfied and tolerated threshold.

Change this parameter if you want to override the APDEX satisfaction threshold.
jmeter.reportgenerator.apdex_satisfied_threshold=5000

25

https://jmeter.apache.org/

Change this parameter if you want to override the APDEX tolerance threshold.
jmeter.reportgenerator.apdex_tolerated_threshold=10000

edit the jmeter.properties file to add the IP of the clients into the remote hosts eg.

remote_hosts=10.128.0.26,10.128.0.27

Running the multi Jmeter testing (distributed load testing)

On the 2 jmeter clients system, run the jmeter-server

cd apache-jmeter-5.5/bin

./jmeter-server

Run JMeter load test

copy the jmeter test file and run jmeter

apache-jmeter-5.5/bin/jmeter.sh -n -t loadtest-expenses.jmx -l ~/tests/result.csv

-e -o ~/load_tests/reports/ -R 10.128.0.26,10.128.0.27

26

3. Performance Test Results

GCE Virtual Machine

3.1) 100 users 1 node

Application Server: 1 c2d.highcpu-4 node

Database Server: 1 c2d.highcpu-4 node with 1500 IOPS

Client: 50 users in 2 e2.medium instances

Concurrent Users: 100 users

Ramp-up Time: 5s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

27

3.2) 250 users 1 node

Application Server: 1 c2d.highcpu-4 node

Database Server: 1 c2d.highcpu-4 node with 1500 IOPS

Client: 125 users in 2 e2.medium instances

Concurrent Users: 250 users

Ramp-up Time: 10s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

28

3.3) 500 users 1 node

Application Server: 1 c2d.highcpu-4 node

Database Server: 1 c2d.highcpu-4 node with 1500 IOPS

Client: 250 users in 2 e2.medium instances

Concurrent Users: 500 users

Ramp-up Time: 25s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

29

3.4) 750 users 1 node

Application Server: 1 c2d.highcpu-4 node

Database Server: 1 c2d.highcpu-4 node with 1500 IOPS

Client: 375 users in 2 e2.medium instances

Concurrent Users: 750 users

Ramp-up Time: 35s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

30

3.5) 1000 users 1 node

Application Server: 1 c2d.highcpu-4 node

Database Server: 1 c2d.highcpu-4 node with 1500 IOPS

Client: 500 users in 2 e2.medium instances

Concurrent Users: 1000 users

Ramp-up Time: 50s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

31

3.6) 1000 users 2 node cluster

Load Balancer: Nginx web server e2.standard-2

Application Server: 2 c2d.highcpu-4

Database Server: 1 c2d.highcpu-4 node with 1500 IOPS

Client: 500 users in 2 e2.medium instances

Concurrent Users: 1000 users

Ramp-up Time: 50s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

32

3.7) 2000 users 2 node cluster

Load Balancer: Nginx web server e2.standard-2

Application Server: 2 c2d.highcpu-4

Database Server: 1 c2d.highcpu-4 node with 1500 IOPS

Client: 1000 users in 2 e2.medium instances

Concurrent Users: 2000 users

Ramp-up Time: 50s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

33

3.8) 2000 users 3 node cluster

Load Balancer: Nginx web server e2.standard-2

Application Server: 3 c2d.highcpu-4

Database Server: 1 c2d.highcpu-4 node with 1500 IOPS

Client: 667 users in 3 e2.medium instances

Concurrent Users: 2001 users

Ramp-up Time: 50s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

34

OpenShift Joget EAP

3.9) 100 users 2 pods

Client: 50 users in 2 e2.medium instances

Concurrent Users: 100 users

Ramp-up Time: 5s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

35

3.10) 250 users 2 pods

Client: 125 users in 2 e2.medium instances

Concurrent Users: 250 users

Ramp-up Time: 10s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

36

3.11) 500 users 2 pods

Client: 250 users in 2 e2.medium instances

Concurrent Users: 500 users

Ramp-up Time: 25s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

37

3.12) 750 users 2 pods

Client: 375 users in 2 e2.medium instances

Concurrent Users: 750 users

Ramp-up Time: 35s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

38

3.13) 1000 users 2 pods

Client: 500 users in 2 e2.medium instances

Concurrent Users: 1000 users

Ramp-up Time: 50s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

39

3.14) 1000 users 4 pods

Client: 500 users in 2 e2.medium instances

Concurrent Users: 1000 users

Ramp-up Time: 50s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

40

3.15) 2000 users 4 pods

Client: 1000 users in 2 e2.medium instances

Concurrent Users: 2000 users

Ramp-up Time: 50s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

41

3.16) 2000 users 6 pods

Client: 1000 users in 2 e2.medium instances

Concurrent Users: 2000 users

Ramp-up Time: 50s ramp-up time for each Jmeter client

Think Time: 10s random delay 3s deviation

42

Appendix: Sample Test Output

500 users 1 node JMeter output

1000 users 2 node cluster JMeter output

43

