
Performance Improvement with Userview Caching

Overview

How Userview Caching Works

More Resources

Overview

Joget Workflow has been thoroughly profiled and optimized to ensure that there is minimal overhead at the platform level. However, in enterprise apps that rely on dynamic data, each page request would require many 

database queries. Database calls are slow not just in query execution, but especially in network I/O. In most cases, database calls are the main performance bottlenecks that cause lengthy page response times and limit 

scalability. 

Caching is the storing of data in memory to reduce the need for database calls. When applied correctly, caching can greatly improve app performance and scalability.

How Userview Caching Works

In v6, caching is now available for all userview pages. Requiring just a couple of settings, any userview menu and page can be easily cached to eliminate bottlenecks and reduce server-side processing.

In every Userview Menu property page, there is a Performance tab which contains the cache settings.

Scope None: No caching is enabled. This is the default setting. 

: The userview page content is cached at the application level. This means that the same content is visible to all users. This scope is suitable for readonly content that is meant to be shared by Application

everyone e.g. public HTML content, general forms, etc. 

: The userview page content is cached per user. This means that there is a copy of personalized content stored for each user login. This scope is suitable for a user's private content where there is heavy User

processing required to display, and is acceptable for the content be slightly delayed e.g. custom datalist inbox, personalized forms, etc. 

Note that content is cached only for GET requests. Whenever a POST request is received, the corresponding cache entry is cleared to reflect the latest update.

Durat

ion 

(s)

The duration in seconds to cache the content.



It is important to note that not all pages can or should be cached, depending on the actual processing time and data or privacy requirement for each page. However when configured appropriately, app performance can 

improve significantly. In a mixed use case test app (a user logs in, views a datalist inbox, starts a process, and logs out), the throughput (average requests per second) for a cached version in a load test shows an improvement 

of almost 30% to 60% compared to previous uncached versions.

More Resources

The following are additional resources for performance optimization:

Optimizing Joget Platform

Performance Analyzer

Database Connection Monitoring and Leak Detection

Deployment Best Practices

https://dev.joget.org/community/display/DX7/Optimizing+Joget+Platform
https://dev.joget.org/community/display/KBv6/Performance+Analyzer
https://dev.joget.org/community/display/KBv6/Database+Connection+Monitoring+and+Leak+Detection
https://dev.joget.org/community/display/KBv6/Deployment+Best+Practices

	Performance Improvement with Userview Caching

