
Advanced Form Data Binder

Introduction

Advanced Form Data Binder Properties

Configure Advanced Form Data Binder

Advanced

Filter

Aggregate Query

Expression Columns

Introduction

Advanced Form Row Data Binder is an extended version of the default . It allows you to add in in a guided and friendly manner.Form Data Binder Filter Conditions

Advanced Form Data Binder Properties

Configure Advanced Form Data Binder

Figure 1: Configure Advanced Form Data Binder

Name Description

Form Source form to retrieve data from.

Joins Form Data Table
Name Description

Form Data Table Name Target table to join with

Field Target table field to join with

Join Field Id Parent field Id to join with

Advanced

Sample

In the screenshot example in Figure 1, such configurations can be presented with the following SQL.

Sample SQL

SELECT * FROM "Claim Entry" entry JOIN hr_expense_claim claim ON claim.id = entry.claim

https://dev.joget.org/community/display/DX7/Form+Data+Binder

Filter

Figure 2: Advanced > Filter

Name Description

Filter

Conditio

ns

Filter Conditions

Name Description

Join Type
And

Or

Field Field ID. (e.g. username)

Operator
Equal

Not Equal

Greater Than

Greater Than Or Equal

Less Than

Less Than Or Equal

Like

Not Like

In

Not In

Is True

Is False

Is Null

Is Not Null

Value Filter value

Extra

Conditio

ns

Additional condition(s) for filtering the data set. HQL is expected here.

Sample

e.customProperties.title = 'Trip'

A hash variable is accepted here.

Sample

e.customProperties.submitted_by = '#currentUser.id#'

Syntax Query

Start your filter name with followed by the field id (i.e. username)e.customProperties.

HQL is accepted

You may even use an operator such as "LIKE" to narrow down your data set.

Userview Key can be used as part of the condition.

Sample

e.customProperties.category_id = '#userviewKey#'

Aggregate Query

Figure 3: Advanced > Aggregrate Query

Figure 4: The configurations shown in will produce the following sample result. Figure 3

Name Description

Group By Add clause/function to the eventual data set. This can be used together with above.grouping Aggregate Fields

In figure 3, the "amount" field will be summed up by "claimant", shown in per record row.

Aggregate

Fields

This field will be displayed once any number of columns has been added into the field.Group By

The select field is to aggregate.

Count

Count Distinct

Sum

Min

Max

Avg

In the sample screenshot above, the "amount" field will be put into the "Sum" function, and "Count" will be applied to "title".

Having

Conditions

This field will be displayed once any number of columns has been added into the field.Group By

The HAVING clause enables you to specify conditions that filter which group results appear in the final results. The WHERE clause places conditions on the selected columns, whereas the HAVING clause

places conditions on groups created by the GROUP BY clause. Read more at http://www.dofactory.com/sql/having

Expression Columns

Figure 5: Advanced > Expression Columns

Name Description

http://www.dofactory.com/sql/having

Expression Columns An additional column can be added in this expression columns using Hibernate Query Language (HQL). This is especially useful when you need to perform additional computation on

multiple columns.

Example 1 - Cast column to data type "long".

Expression

CAST(price AS long)

SUBSTRING(CAST(dateCreated as string),1,10) // To extract the date from the datetime
database column

Expression

CAST(e.customProperties.sales_price AS long) - CAST(e.customProperties.price AS long)

Example 2 - Concatenate multiple columns into one.

Expression

CONCAT(first_name, ' ', last_name)

Expression

first_name ||' '|| last_name

Custom Checkbox/Radio Button

Value

Define custom record ID to be used to pass over to column action. Defaulted to ID.

	Advanced Form Data Binder

